月21日杭州消息:一年一度的云棲大會是各項前沿技術集中發布和展示的盛會,而阿里媽媽作為阿里集團的營銷先鋒也是每年現身于其中的一個重要角色。9月21日,“AI讓營銷變得更簡單”阿里媽媽智能營銷專場在云棲大會亮相。 當下,數字經濟是浙江各地新舊動能轉換的關鍵、城市轉型發展的支柱。浙江省擬定在10月20日舉行2018中國(浙江)數字貿易交易會展示浙江數字經濟成果,浙江省電子商務促進會邀請了阿里巴巴、wish、eBay、亞馬遜等在浙江發展數字經濟的企業集體展示,同時邀請了20個縣域參與“麒麟計劃”的跨境產業集體參展,在此次2018杭州云溪大會上,阿里巴巴的諸多數字經濟相關亮點提前亮相,值得深入研究,尤其是利用數字經濟前沿技術的阿里媽媽終于走在了臺前,展示與企業之間的全新的營銷優化成果。 過去一年新零售開始風起云涌,電子商務營銷開始進入消費者運營階段,阿里媽媽針對性發布了全新的營銷優化平臺TMOP;今年它還特別加入了品牌廣告的技術內容,披露了自研算法XSHALE的進展。除此之外,阿里媽媽繼續扮演在廣告技術領域的領跑角色,推出了自研的分布式深度學習框架XDL,讓AI技術在超大規模的工業級數據上產生了真金白銀。 隨著對人工智能領域布局的全面深入,阿里媽媽全方位的技術品牌屬性越加明顯,Ad Tech技術驅動營銷,成為其一張顯著的名片。 以消費者運營為中心,全新營銷優化平臺TMOP發布 從運營流量轉向運營消費者,這顯然成為了整個大淘系所倡導和引領的新風向。對此,阿里媽媽在營銷領域也早有布局,此次發布的營銷優化平臺TMOP正是基于其搜索業務的多項探索而重磅推出的。 阿里媽媽資深算法專家仇光(花名九吾)介紹說,TMOP平臺包含了關鍵詞推薦、人群推薦、出價、創意等多項功能,圍繞客戶在營銷過程中遇到的各個環節,提供對應的方案和算法支持。 以出價環節為例,TMOP推出轉化出價的功能,把商家的營銷需求與消費者運營聯系到了一起。假設一個商家原本對“薯片”一詞的出價為1元,TMOP會根據當前搜索薯片的網民與其買薯片的轉化概率進行匹配,如果轉化概率低,系統會幫助他降低出價,確保客戶的錢是真正花在效果好、轉化概率高的消費者身上。這類面向序列決策的實時競價策略,仇光團隊也產出了相應的論文,被數據挖掘頂級會議KDD 收錄。 以消費者運營為中心的思路,意味著每一個消費者都是獨特的,打破了商品維度的單一化運營。因此,千人千面的特色在TMOP尤為明顯,不僅是商品呈現,還是創意圖片,乃至商品信息,不同消費者看到同一個商品的標題都會不一樣,機器可以根據消費者特性,實時動態匹配新標題。僅僅通過動態標題這一項,點擊率就實現了2%均值的提升。 仇光提到,在TMOP平臺的設計中,特別強化了“自動化”這個特點,在人工智能的幫助下,客戶只需簡單的操作,剩下的事情全部由平臺來自動幫他實現,更精準、更智能、更普惠。 智能算法構建全域營銷大圖,圖深度學習精確理解用戶意圖 使用智能算法,阿里媽媽將搜索、推薦、視頻、金融、物流等線上和線下數據、淘系站內和淘系站外數據整合和提煉,得到了一個大規模、復雜、異構的全域數據大圖。這張全域數據大圖包含了數十億節點和數百億邊,從多種視角刻畫商家、商品/廣告、用戶之間豐富的關聯關系,具有非常大的價值。 阿里媽媽高級算法專家林偉(花名楊焜)進一步介紹了阿里媽媽如何通過自研的圖深度學習算法,將全域數據大圖中的實體映射到高維空間,高效進行用戶意圖與廣告的匹配。 以第二代半監督圖深度學習算法LasGNN為例,通過異構圖卷積,LasGNN同時刻畫了標注信息和圖結構信息。標注信息給LasGNN提供了點擊、成交等核心抓手指標;圖結構信息為LasGNN提供了大量同一數據生態的一致性知識,幫助LasGNN更好地認知用戶意圖和商品/廣告物料之間的關系。林偉特別提到兩點:1)通過圖卷積, LasGNN能夠將用戶的搜索序列變成搜索子圖,更立體全面地捕捉用戶意圖;2)圖卷積的傳播機制有很強的推理泛化能力,可以使LasGNN對新廣告更友好。 同時,阿里媽媽搭建了工業級的圖訓練引擎,支持十億節點、百億邊圖規模的存儲、訓練,實現了多種圖游走、圖卷積算法,高效全面地支撐圖深度學習更精確、立體、深入地理解用戶意圖和商品/廣告物料。 從效果廣告到品牌廣告,技術賦能“合約保量”的創新 品牌廣告與效果廣告有很大的不同,阿里媽媽高級算法專家祝文祥(花名橫云)認為,與電商類效果廣告所強調的實時競價不同,品牌廣告更強調“合約保量”,廣告主提前購買未來一段時間內的流量,在合同中明確廣告展示的時間、數量和價格,平臺保量完成。 而阿里媽媽品牌廣告,通過重新定義消費者和品牌鏈路關系,幫助品牌識別、運營和管理消費者。 精準保量是其中非常核心的算法,阿里媽媽品牌廣告的技術創新主要體現在三方面—— 1、最細粒度的廣告分配 如今品牌也會看重投放效果,將廣告供給節點從普通算法的人群粒度細化到用戶粒度,使得能根據用戶對品牌的偏好,直接優化后鏈路的觸達效果; 2、復雜約束的算子抽象 在淘寶、優酷等品牌廣告業務中,存在大量特定業務需求,比如廣告主優先級、資源互斥、復雜的頻次控制需求等,我們將其全部抽象為算子,作為最優化問題的約束條件; 3、大規模問題優化求解 通過分布式的參數服務器架構解決大規模二部圖分配優化問題,通過梯度下降迭代求解可以在精度和速度之間權衡,通過安排任務優先級形成有向無環圖進行多任務并行化批處理,在投放過程中根據保量完成情況進行實時調整。 其中,祝文祥團隊也通過自研的XSHALE算法,對上億用戶對應的廣告供給節點在上百個投放計劃,實現分鐘級別的最優化投放概率計算。 構建深度學習平臺,XDL成為阿里媽媽重要的動力引擎之一 被人稱作 “算法天才”的蓋坤(花名靖世)也現身演講,作為阿里媽媽精準展示技術部的資深總監,他介紹了阿里媽媽自研的新一代工業級分布式深度學習框架——XDL,不僅對當下的營銷起著關鍵的作用,對于阿里媽媽未來幾年的布局也至關重要。 深度學習推動了近幾年互聯網算法的快速發展,而推動深度學習技術產生巨大價值的核心點則是強力的深度學習訓練框架。誰擁有了更大的架構與算力,誰就有機會在未來的競爭中掌握先機。業界的頂尖公司,如谷歌、Facebook等紛紛研發并開源了其深度學習框架,但現有的開源框架往往構建在圖像、語音等應用基礎上,對于廣告/搜索/推薦這種互聯網領域典型的高維稀疏離散數據,往往比較低效。 阿里媽媽的XDL深度學習框架,是基于阿里巴巴海量規模的業務場景實踐,全新設計和研發的新一代分布式深度學習框架。XDL獨創了四大關鍵范式(新數據范式、新模型范式、新能力范式、新架構范式),使其真正具備工業級強度。XDL實現了千級節點并發的近似線性計算加速比,能容納千億規模稀疏參數訓練、在線流式訓練,以及全流程異步流水線最大化硬件飽和率的能力。 目前,XDL已經在阿里媽媽的眾多業務場景中被大量應用,創造了百億規模的收入增益。同時,得益于XDL全新的架構能力,一系列業界首創的模型算法能夠在XDL平臺上高效訓練,包括基于樹狀結構的任意深度學習全庫檢索模型、用戶行為圖像和CTR模型的超大規模端到端異構網絡等。更可喜的是,XDL未來可能會逐步開源,賦能整個業界。 隨著頂層智能營銷算法到底層深度學習平臺等一系列布局的逐步深入,阿里媽媽以AI為代表的Ad Tech正讓營銷變得更簡單,它也離全球最高效的一站式數字化營銷云平臺越來越近。 (沈曄) |